

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0508 of 23 September 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Sleeve anchor DNBOLT

Torque-controlled expansion anchor in size 8, 10, 12 mm for use in non-cracked concrete

Apolo MEA Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk 13

12 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", Edition April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-15/0508

Page 2 of 12 | 23 September 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z48029.15 8.06.01-1/15

European Technical Assessment ETA-15/0508 English translation prepared by DIBt

Page 3 of 12 | 23 September 2015

Specific Part

1 Technical description of the product

The sleeve anchor DNBOLT is an anchor made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion.

Product and product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for tension and shear loads in concrete	See Annex C 1 and C 2
Edge distances and spacing	See Annex C 1
Displacements under tension and shear loads	See Annex C 1 and C 2

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

Z48029.15 8.06.01-1/15

European Technical Assessment ETA-15/0508

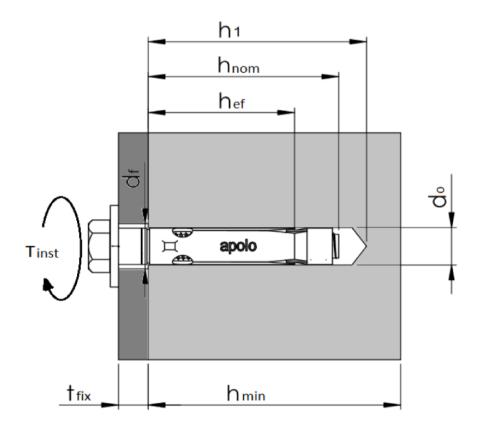
Page 4 of 12 | 23 September 2015

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 23 September 2015 by Deutsches Institut für Bautechnik


Andreas Kummerow p. p. Head of Department

beglaubigt: Tempel

Z48029.15 8.06.01-1/15

sleeve anchor DNBOLT (after installation)

 h_{nom} = Setting depth

 h_1 = Depth of the drill hole (deepest point)

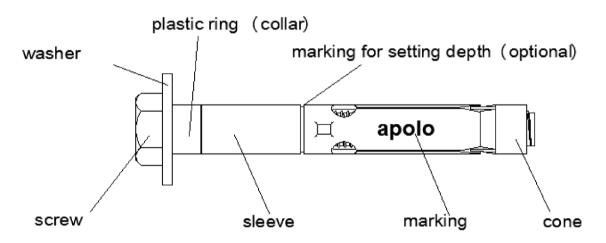
h_{min} = Min. thickness of concrete member

 t_{fix} = Thickness of fixture

h_{ef} = Effective anchorage depth

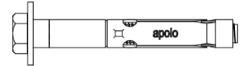
 d_0 = Drill hole diameter

d_f = Diameter of clearance hole in the fixture


T_{inst} = Installation torque moment

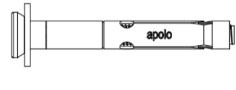
Product description
Installation conditions

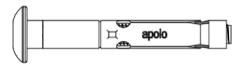
Annex A 1



Marking: brand or logo, diameter - optional length - clamping size

Example for marking: apolo 10-80/30 or 10-30

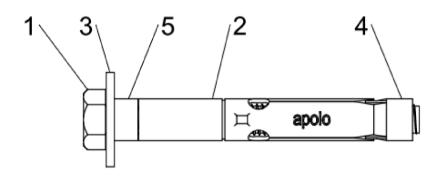

Anchor types:


Type DT - DIN 933 screw and washer

Type DV - Countersunk screw

Type ARPHO - Countersunk screw and washer

Type DB - Button screw


sleeve anchor DNBOLT

Product description

Assembling, marking, anchor types

Annex A 2

Table 1: Components and materials

Item	Designation	Material
1	Screw	Steel, acc. DIN EN ISO 898-1, class 6.8 or 8.8
2	Sleeve	Carbon steel, hardness 90-150 Hv
3	Washer	Carbon steel, hardness > 90 Hv
4	Cone	Carbon steel, hardness > 150 Hv
5	Collar	Plastic

All steel parts are zinc plated and blue passivated ≥5µm acc. DIN EN ISO 4042

Table 2: Dimensions

Anchor	d _o	Collar length	Washer	Ø screw	Sleeve length	Screw length	SW
Anchor	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]
DNBOLT 8	8	4,5	DIN 9021 or ISO 7093	M6	≥30,5	≥45	10
DNBOLT 10	10	5,5	DIN 9021 or ISO 7093	M8	≥40,5	≥60	13
DNBOLT 12	12	6,5	DIN 9021 or ISO 7093	M10	≥47	≥70	17

sleeve anchor DNBOLT	
Product description Components, materials and dimensions	Annex A 3

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

Static and quasi-static loads.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000-12.
- Strength classes C20/25 C50/60 according to EN 206-1:2000-12.
- · Non-cracked concrete.

Use conditions (Environmental conditions):

Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored.
 The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with ETAG 001, Annex C, design method A, Edition August 2010

Installation:

electronic copy of the eta by dibt: eta-15/0508

- Hole drilling by hammer drilling only
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- Positioning of the drill holes without damaging the reinforcement.

sleeve anchor DNBOLT

Intended use
Specifications

Annex B 1

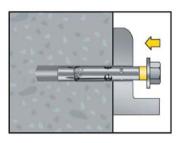
Table 3: Installation parameters

sleeve anchor DNBOLT			Size		
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Nominal drill hole diameter	d _o	[mm]	8	10	12
Max. cutting diameter of drill bit	d _{cut,max}	[mm]	8,45	10,45	12,50
Depth of drill hole	h ₁ ≥	[mm]	45	55	65
Effective anchorage depth	h _{ef} ≥	[mm]	30	37	43
Setting depth	h _{nom} ≥	[mm]	40	50	60
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14
Thickness of fixture	t _{fix}	[mm]	5250	5300	10300
Wrench size	SW	[mm]	10	13	17
Installation torque moment	T _{inst}	[Nm]	10	15	30

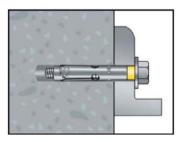
Table 4: Minimum thickness of concrete member, spacing and edge distance

sleeve anchor DNBOLT				Size	
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Minimum thickness of member	h _{min}	[mm]	100	100	110
Minimum spacing	S _{min}	[mm]	40	50	60
Minimum edge distance	C _{min}	[mm]	40	50	60

sleeve anchor DNBOLT	
Intended use Installation parameters, minimum thickness, min. spacing and edge distance	Annex B 2


Installation instructions of sleeve anchor DNBOLT

1. Drill the hole with a hammer drill


2. Clean the borehole

3. Hammer in the anchor (pay attention to the defined setting depth)

4. Apply the installation torque moment T_{inst} by using a torque wrench

5. After installation

sleeve anchor DNBOLT

Intended use Installation instruction

Annex B 3

Z48030.15

electronic copy of the eta by dibt: eta-15/0508

Table 5: Design method A - Characteristic values for tension loads

sleeve anchor DNBOLT			Size		
Sieeve anchor DINBOLT			DNBOLT 8	DNBOLT 10	DNBOLT 12
Steel failure class 6.8					
Characteristic resistance	N _{Rk,s}	[kN]	12,1	22,0	34,8
Steel failure class 8.8					
Characteristic resistance	N _{Rk,s}	[kN]	16,1	29,3	46,4
Pull out failure					
Characteristic resistance in non-cracked concrete ≥ C20/25	N _{Rk,p}	[kN]	6,0	7,5	12,0
Installation safety factor	Υ ₂	[-]	1,0	1,0	1,2
Concrete cone and splitting failure					
Effective anchorage depth	hef	[mm]	30	37	43
Char. spacing	S _{cr,N}	[mm]		3 hef	
Char. edge distance	C _{cr,N}	[mm]	1,5 hef		
Spacing (splitting)	S _{cr,sp}	[mm]	180	200	240
Edge distance (splitting)	C _{cr,sp}	[mm]	90	100	120
Installation safety factor	Υ2	[-]	1,0	1,0	1,2

Table 6: Displacement under tension loads

sleeve anchor DNBOLT				Size	
Sieeve anchor DNBOL1		DNBOLT 8	DNBOLT 10	DNBOLT 12	
Tension load	N	[kN]	2,5	3,3	5,7
Displacements	δ_{No}	[mm]	0,35	0,33	0,39
Displacements	$\delta_{N^{\infty}}$	[mm]		2,15	

sleeve anchor DNBOLT	
Performances Characteristic tension load values, displacement under tension load	Annex C 1

Table 7: Design method A - Characteristic values for shear loads

sleeve anchor DNBOLT			Size		
		DNBOLT 8	DNBOLT 10	DNBOLT 12	
Steel failure without lever arm class 6.8					
Characteristic resistance	$V_{Rk,s}$	[kN]	6,0	11,0	17,4
Steel failure without lever arm class 8.8					
Characteristic resistance	$V_{Rk,s}$	[kN]	8,0	14,6	23,2
Steel failure with lever arm class 6.8					
Characteristic bending moment	M _{Rk,s}	[Nm]	9,2	22,5	44,9
Steel failure with lever arm class 8.8					
Characteristic bending moment	M _{Rk,s}	[Nm]	12,2	30,0	59,8
Concrete pryout failure					
Factor in equation (5.6) of the Guideline ETAG 001, Annex C, 5.2.3.3	k	[-]	1,0	1,0	1,0
Installation safety factor	Υ2	[-]		1,0	
Concrete edge failure					
Effective length of anchor under shear load	lf	[mm]	30	37	43
Diameter	d _{nom}	[mm]	6	8	10
Installation safety factor	Υ ₂	[-]		1,0	

The plastic ring may not be used for the load transmission.

Table 8: Displacement under shear loads

sleeve anchor DNBOLT			Size		
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Shear load	V	[kN]	2,9	5,2	6,9
Displacements	δ_{Vo}	[mm]	0,17	0,56	0,53
Displacements	δ _{V∞}	[mm]	0,26	0,84	0,80

sleeve anchor DNBOLT	
Performances Characteristic shear load values, displacement under shear load	Annex C 2